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DRY DEPOSITION MODEL SENSITIVITY

W. S. LEWELLEN, A. K. VARMA AND Y. P. SHENG
Aeronautical Rescarch Associates of Princeton, Inc., 50 Washington Road,
P.0. Box 2229, Princeton, New Jersey, USA

INTRODUCTION

Estimates of dry deposition are required to simulate the fate of atmospheric
pollutants for a number of important applications. This paper attempts to bound
the uncertainty which is likely to exist in current models of plume depletion
due to dry deposition. The particular application considered herein is a plume
generated by a nuclear power plant accident. We wish to ascertaln the bounds on
current estimates of deposition velocities for the main effluents of interest.
Our analysis will build upon the study by Lewellen and Sheng1 of the fundamental
turbulent interactions within a plant canopy. )

We first review our present understanding of the basic dependence of
deposition velocity on a number of independent variables. The dependence on
atmospheric stability, through its effect on turbulent transport within the
surface layer, is the most amenable to direct analysis. The aggregate effect of
turbulent transport within individual canopy structures and the viscous sublayer
on the basic clements of the surface canopy is considerably less tidy to
analyze. The actual surface chemical reactivity can generally only be
determined by experiment. If the effluent of interest is in the form of small
particles, the viscous sublayer on the canopy surface is likely to be the
dominant factor in determining the deposition.

In the final scction we attempt to estimate deposition velocity for some of
the effluents which may be expected from a nuclear reactor accident. This
requires first estimating the uncertainties in the local meteorological
variables, the surface canopy variables, and the physical/chemical properties of
the main effluents of interest. These wuncertainties in the independent
variables are translated into uncertainties in the deposition velocity by using

the analysis of the previous sections.

REVIEW OF DRY DEPOSITION MODEL
-Pry deposition is generally reported as a deposition velocity, V4, defined as
the flux of a gaseous oxr particulate species divided by the airborne

concentration of that species. Physically, it “Yepresents the velocity

(c) Elsevier Science Publishing Co., Inc.
Precipitation Scavenging, Dry Deposition, and Resuspension.
Pruppacher et al., Editors
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equivalent to the covariance of the turbulent fluctuations of the vertical

velocity and the fluctuations of the species concentration divided by the mean

concentration. Since a concentration gradient is generally necessary to deliver

a flux to the surface, Vd is necessarily a function of the height at which the

normalizing concentration is measured. Since it is a turbulent transport
quantity it depends on all of the meteorological parameters governing the wind
distribution as well as such diverse phenomena as aerosol dynamics, leaf surface

chemistry, plant anatomy, and land use, which determine the surface boundary

condition.
Although considerable uncertainty is still involved in several aspects of a
general model of dry deposition, we wish to emphasize those aspects which are

known and use them to bound the uncertainty which may be expected in dry

deposition estimates.

Individual resistances which determine V,

Deposition of various species in the planetary boundary layer is influenced
by the resistances of the various layers through which the species must pass to
reach the ground. For ease of depositional analysis, it is convenient to break
up the boundary layer into three different regions. The total resistance to

deposition, defined as the inverse of the deposition velocity, is then the sum

of resistances presented by each region.

-, - + .
Vd Racrodynamlc ! Rcanopy fitm ™ Rsurface n

Raerodynamic represents the sum of the resistances to turbulent transport 1in

the atmosphere. The se
thin, viscous, relatively laminar sublayer next to the leaf surface.

resistance the species

cond resistance accounts for that resistance due to the
The third
resistance is the surface chemical or biological

encounters after it reaches the solid surface.

.

Atmospheric surface layer resistance
we will only consider the constant flux region in estimating

For simplicity,
the aerodynamic resistance. This should be adequate for the aerodynamic

resistance above the canopy, as long as the reference height for defining the

deposition velocity does not exceed approximately 100 m.

The similarity solution which exists for the vertical gradients of velocity

and species concentration in the constant flux region may be integratgd with

respect to z to yield expressions for the aerodynamic resistance which are a

function of height, z; aerodynamic surface roughness, z.; stabilicy, 17l; and

wind speed. This relationship is plotted in Fig. 1. The resistance 1is
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inversely proportional to the wind speed,

so the product of the reference height
wind speed and the aerodynamic resist

ance 1is presented. At the 1 m reference

height, stability has little cffect on the resistance, while at 100 m height as

much as three orders of magnitude variation is possible. The equivalence
between L1 and stability class is indicated for z, = 10 cm. As given by
Golderz, the stability classes cover a broader (narrower) range of L-1 as the

surface roughness is increased (decreased).

Canopy film resistance

The canopy introduces source and sink terms into the basic conservation

equatlons for momentum, heat, and speeies concentration, so the constant flux

relationships used to plot Fig. 1 do not hold within the canopy itself. The

effective aerodynamic roughness can be used to estimate the atmospheric
but a more detailed analysis of the turbulent interactions within

the plant canopy is required to estimate the additional resistance imposed by

resistance,

the viscous air film next to the leaf surface. Lewellen and Shengl developed a

model of turbulent flow within a canopy using a second-order closure model of

turbulent transport. A key feature of the model is that it distinguishes

between the aerodynamic drag 1mposed by the pressure difference between the
upwind and downwind surfaces of a leaf or other object in the canopy,
skin friction drag associated with

and the

the wetted area within the canopy. This

distinction is important because the species transfer to the surface is more

analogous to the skin friction portion of the drag than it is to the pressure

drag. Reference 1 presents some computed results of the sensitivity of the

deposition velocity to such variables as the leaf area index, LAI; cthe ratio of

the total wetted area to the projected frontal area, Aw/Af, the Schmidt number

of the species, v/D; the 1leaf surface resistance; the wind speed above the

canopy; and the atmospheric stability ‘above the canopy.

A major difficulty of such a detailed model is that insufficient data is

available to either provide the detailed plant structure functions required for

such an approach or to provide the desired model validation. However, the

results do suggesr a separate factoring of the influences of meteorology, canopy

Sstructure, and the physical structure of the species by taking the canopy

resistance to be parameterized as

R.Uy = Ra(Uh/UR) Cs Py (2)

where Uh/Ul is the ratio of the velocity at the top of the canopy to that at the

reference height, CS is a canopy structure parameter, and PS

is a parameter

depending on the physical structure of the species of interest.
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Table }| provides our guess of Cq for a number of different canopy types. It
also includes an estimate of z, which is needed to determine R, through Fig. 1,
and an estimate of the leaf wetted area per unit horizontal areas, LAwi which

will be useful in estimating surface chemical resistance.

TABLE 1: Typical values of characteristic canopy parameters

LA I Cg z, (m)
Grassland 4. .5 0.04
Agricultural crop (corn) 20. 0.4 0.2
Suburb 10. 1.0 0.8
Summer deciduous forest 25. 0.2 0.6
Winter deciduous forest 2. 3.0 1.0

A significant deficiency of the analysis of Ref. 1 is that it considered the
turbulent production due to drag and buoyancy within the canopy as the sole
sources of turbulence. It is known that, under unstable conditions, buoyancy
throughout the boundary layer can contribute to the turbulence level at the
surface. Thus whenever the characteristic convective turbulent velocity
w —[g w'b' Z. /T ]1/3 exceeds the turbulent shear stress velocity u* by more than
a factor of approximately 2.5, Eq. (2) should be modified to account for this
additional source of turbulent transport of species within the canopy. The
resultant increase in horizontal wind fluctuations will be essentially passive
as far as the vertical transport of momentum or species above the canopy is
concerned, but can be quite effective in stirring the air within the canopy to
decrease R,.. Without attempting to modify the full model of Ref. 1 to account
for this effect, we believe it can be approx1mately 1ncorporated in Eq. (2) by

multiplying it by [{(we/2.5uz)2+1] : [(-z;/1) /3+1 for unstable conditions.

Effects of physical properties of pollutant species

For the dry deposition of gases in the atmosphere, the physical property of
importance that affects dry deposition 1is the Schmidt number of the gas,
Sc = v/D. The Sc for gases depends principally on the ratio of the molecular
weight of the diffusing gas and to that of the medium through which it is
diffusing. For diffusion in air, Sc¢ ranges from 0.25 for Hydrogen to between
2.0 and 2.5 for heavier gases like UFs and Iodine.

The dry deposition of particles is principally dependent on the particle
diameter and particle density. The effects of particle density can be roughly
incorporated into the particle size by increasing the equivalent particlensize
by a factor of pl/z. particles < 10pm in diameter tend to follow all of the

turbulent eddies and be diffused in the same manner as a gaseous species, except
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Figure 1. Aecrodynamic resistance as i Figure 2. The species physical
a function of stability for three characteristic parameter, P , as a
values of aerodynamic roughness and function of particle diametdr for

reference height. Stability is different values of r.m.s. turbulent
measured in terms of the Monin- velocity q.

Obukhov length. The equivalent
stability class is indicated for
zo= 0.1 m.

in the viscous sublayer next to a surface. Transport in the sublayer is
determined by three main contributions - Brownian motion, gravitational settling
and  dnertial  fmpaction. Other possible wmechanisms such as thermophoresis,
diffusiophoretic forces, electrical migration, etc, may be important wunder
certain conditions but are not included in the current formulation.

The parameter.which accounts for the physical structure of the species of

interest is modeled here as
p.= (207 Ty 4 r. /R -1 (3
s D diff’ Mimp

where, for particles, D is the Brownian- diffusion coefficient and Rdiff/Rimp is
the ratio of the resistance to Brownian diffusion to . that due to inertial
irﬂpaction. For gases Rdiff/Rimp=o' The effect of particle si®e and turbulence

level on P. is plotted in Fig. 2, as given by the model presented in reference
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1. This model Should be appropriate as long as the characteristic radius of the

Z 0.1 cm, so that the particles are transported to the
of the

canopy elements exceeds
canopy by the microscale turbulent eddies rather than by direct filtering

particles not following the larger scale flow around the canopy elements.

Surface chemical resistance

For gaseous pollutants, the surface resistance depends on the chemical

reactivity of the gas with the surface material. For plant canopies, the

surface resistance also has a biological component, that is, whether the plant

‘stomata are open or closed. With open stomata, the plant “inhales” the

pollutant gas and the surface resistance is sigdificantly lower than if the

stomata are closed.
v
The surface resistance needs to be determined experimentally for particular

combinations of pollutants and surfaces of interest. Once a data base for Ry

has been established, it is possible to estimate the surface resistance for

other similar chemical species by extrapolation of the measurements. Garland3

has reported values of R, for 502 interacting with a number of different
surfaces. In general, for soluble reactive gases the R will be quite low for
wet surfaces and increase by some two orders of magnitude for dry surfaces. The

surface resistance for nonreactive gases will be high in general, and not vary

much for different surfaces. The surface resistance for the deposition of

particles has been considered to be zeroc in most previous studies, and this

assumption has also been used in our current model. In our accounting system

any reentrainment processes must be counted as a source term rather than being

subtracted f om the deposition.

Within a canopy the R which appears in (1) is effectively reduced from the

elemental value by the increase in wetted area available for absorptlon. This

may be accomplished by dividing the elemental surface resistance by the wetted

area leaf index.

ESTIMATES OF DEPOSITION VELOCITY APPROPRIATE FOR EFFLUENTS
FROM A NUCLEAR REACTOR ACCIDENT

The Nuclear Regulatory Commission has established the requirement to consider

the deposition of radioactivity up to 50 miles from the power plant site for

purposes of evaluating possible ingestion pathways In the case of an

accident, monitoring teams would be sent out to measure actual values of

Accurate models would be an important aid in scoging

guidance to a

accumulated radioactivity.
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Our approach to estimatimg the appropriate deposition velocity will be to
estimate first the physical/chemical properties of the main effluents, which
rhen may be used to estimnte the deposition veloeity via the model discussed in

the previous sections.

Uncertainties in the physical and chemical properties
of the main effluents of interest

Previous studies indicate that the principal groups of radioactive effluents
expected to be released are: 1) Noble gases - mostly krypton and Xenon - that
are basically nonreactive; 2) Iodine gas; and 3) Particulate material
composed of various radionuclides.

Although the noble gases are nonreactive, and we expect their deposition
velocities to be zero because of the essentially infinite surface resistance, it
is possil&lg for a noble gas to dissolve in water and thus a wet surface could
act as a temporary storage for a noble gas. Since this gas will be released
after the plume is past, we believe it is reasonable to consider this more as an
added plume dispersal mechanism than it is a true deposition.

The high reactivity of the Iodine gas should act to make its surface
resistance quite low. For a wet surface, this surface resistance should be
essentially zero, while that for a dry plant leaf is estimated to vary from 0.5

to 5.0 sec/cm, depending upon whether the stomata are open or closed.

The particulate material within the containment vessel will include
radionuclides attached to atmospheric aerosols (submicron to a few microns
size), particles formed by homogeneous condensation of volatile species
(submicron size), larger particles formed by agglomeration of aerosols in
regions of high concentration (micron size), water droplets formed in a steam
environment using the smaller particles as condensation nuclei (10-20 um), and
some large particles produced due to possible fuel rod rupturé (10-100 um). A
core melt sequence is cxpected to lead to the formation of large quantities of
aerosols due to concrete decomposition composed of silicon and calcium with
attached radionuclides. According to reference 5, the particle size is expected
to be 2 um aerodynamic mass median diameter with a geometric standard deviation
of 2 for a log normal distribution. This corresponds to most of the particles
ranging from 0.5 um diameter to 10 um diameter. The density of these particles
will range from atmospheric ae_rosol densities to heavy element particles with
densities of as much as 20 gm/cmj. The particle size distribution out in the
atmosphere from failed containments will be at least as broad as that within the

3
containment vessel. Thus, from Fig. 2, P, can range from 1 to 10 .
-
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Uncertainties in the meteorological and surface variables

In developing an emergency response model, it is not possible to know in
advance what the meteorological conditions will be at the time of any accident.
In assessing possible impact it is therefore prudent to assume ‘“worst-case
meteorology”. However, it is not clear what conditions would constitute the
worst case since conditions which reduce the deposxtlon relatively close to the
release point lead to increased deposition at a dlstance. Which is worse
depends on the land-use pattern around the specific plant. It follows that a

wide range of meteorological conditions should be considered to permit the model

to estimate the worst tase.

e

One situation which is likely to lead tollapge deposition relatively close to
the source is the early part of the morniﬁg transition from stable to unstable
atmospheric conditions after a night with heavy dew. The remnant dew will serve
to effectively eliminate any surface resistance for the iodine gas while the
decre351ng atmospheric stability acts .to reduce the aerodynamic resistance.
Also the relatively low mixed layer height at this time will keep a low level
release relatively close to the surface. The actual wind speed does not appear
to be very important in determining the total deposition. Both the deposition
velocity and the plume transport velocity are roughly ﬁroportional to the wind
speed. Thus the fraction of a plume deposited within a given distance of the

source should be relatively independent of wind speed.

The worst case for deposition at an appreciable distance from the source is
likely to be associated with a release which occurs a couple of hours earlier in
the morning. 1In this case, the high stability of the atmosphere can act both to
hold down the deposition velocity in close, and permit the plume to travel some
distance without wide dispersal.  When rhe morning  transition from ntable to
unstable occurs it then permits relatively heavy deposition of the plume at an
appreciable distance from the release point.

The full range of stability conditions need to be considered when assessing
the impact of future accidents, but the stability input to the deposition
velocity estimate should be compatible with the stability choices used in the

dispersion calculation.

Resultant uncertainty in deposition velocity

Fig. 3 shows the result of applying the ranges discussed in the last two
sections to the analysis represented by Figs. 1 and 2. The combined result
represents approximately 5 orders of magnitude spread in the ratio of the
deposition velocity to the wind velocity. If allowance is made for one order of

magnitude variation in the wind speed, this yields a probable range of 6 orders
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dispersion model. This allows the choice of R, to be correspondingly narrowed.

The thickness of the model layer adjacent to the ground dictates the z height

which should be used in Fig. 1. Tf a simple Gaussian plume model is to be used,

then a height characteristic of the plume is appropriate. Thus, stability will

introduce much more uncertainty into estimates of V4 for use with single layer

plume models than in detailed numerical models which carry a relatively large

number of vertical layers with a thin surface layer.

When the meteorology of a particular time is considered, then the largest

uncertainty is likely to be associated with the uncertainty involved in the

distribution of particle sizes released. As may be seen from Fig. 2, narrowing

the range of particle sizes rapidly decreases the uncertainty in Ps' On the

other hand, when the canopy is lush so that Cg § 0.2 and typical afternoon

conditions are considered, so that L/Zi=10—2, then Fig. 3 will yield a value of

Vq for submicron particles with Ps'—'lO3 which is within one order of magnitude of

that obtained for larger particles with Pg=1.

CONCLUDING REMARKS

: . . e : s e ;
our analysis provides an estimaté of the uncertainty existing 1n current

estimates of the deposition velocity as a result of uncertainties in certain

independent variables such as canopy structure, surface~layer stability,

particle size, and surface chemical reactivity. It jndicates that all of these

variables need to be determined if a relatively accurate estimate of V4 is

desired for a particular time and place. It also suggests that it is possible

X . ; 6
to ascribe much of the data scatter reported in reviews such as Sehmel's™ to

uncertainty in some of these key experimental variables. Although some of the

uncertainty in deposition velocity estimates may still be attributed to modeling

deficiencies, particularly as related to mechanisms other than turbulent inertia

or Brownian motion for transporting micron size particles across the viscous

sublayer, much of it <can be directly = attributed to uncertainty 1in key

independent variables.
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DISCUSSION

W.G.N. SLINN: 1. For particies whose gravitational settling is important,

2. When particle inertia ig significant (and possibly also forinterception).
the authors' use of Reynolds’ analogy (ignoring form drag) is invalid.

3. In Eq. (3), interception has been ignored; yet Chamberlain's data show
interception’s significance.

4. Fig. 2 does not show the "inertial bump" at the larger wind speed, and
apparently does not contain interceptinn; it is therefore quite inadequate,

5. For iodine released from nuclear facilities. the authors should have
commented on iodine'sg chemical form, the photolysis of CH3I (and the possible
photolysis of I,), and attachment of the 8ases and dons to released and
ambicent acrogoel particles,

6. In contrast ro the authors’ statement. it is common that if the particle
size distribution is narrowed. then the incertainty in Vi increases {(because
Crrors are no lTonper averaped) ., -

Joodt Interception and rhe Pulydlspersity of aerosols ig included, then the
uncertainty range is reduced from that described by the authors.

8. The reader could have been helped if the references had given a better
reflection of current knowledge about dry deposition.

W.S. LEWELLEN, A.K. VARMA and Y.P. SHENG: 1, Gravitational settling imposes
a lower bound on V - Above this lower bound the division into separate re-
Sistances is still very useful since particles of 10 um#r less will generally
follow the turbulent eddies éxcept in the thin viscous layer adjacent to the
canopy elements.

2. This is the reason for including the parameter Rdiff/Rimp in Eq. (3).
and for distinguishing between form drag and friction drag in the basic model
of the canopy.
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3. What you refer to as interception must be included ia the Rdiff/Rimp'
It is true that Rdiff/Rimp should depend on the characteristic radius of
canopy elements when curvature of the flow around canopy elements exceeds the
‘curvature imposed by the microscale turbulent eddies. This will occur when
the characteristic radius is less than approximately 0.1 cm.

4. Disagree. Figure 2 dees include the inertial hump. It was not evident
in the figure provided with the review copy but is quite distinct for the
largest value of q in the present figure.

5. We agree that plume chemistry can greatly compound the problem. but is
unlikely to reduce the range of uncertainty in V3.

6. Disagree. Broad particle size distribution means size distribution may
change as a function of downwind distance which is unllkely to reduce uncer-
tainty. It is true that a broader size distribution will under a number of
conditions yield a larger, easier to measure value of V4. but this should not
be equated with saying the broader distribution provides a more certain
estimate of Vg.

7. As noted earlier, we have attempted to include interception in our
analysis and as noted in the last comment, only partially accept that the
polydispersity of aerosols reduces the uncertainty. Thus we believe. as
stated in the paper, that a range of 3 orders of magnitude variation in de-
position is appropriate when assessing the impact of a nuclear reactor
accident.

8. We agree. but in order to have included survey material within our al-
lotted space, we would have had to streamline our basic argument much more.
Our Ref. 1 includes a reference list of 46 publications for those who wish to
pursue the details and foundation of our analysis. Since this paper is in-
tended to appear in a book accompanied by a large number of other dry de-
position papers, we felt confident that readers would receive a geodreflection
of current knowledge about dry deposition even if we short—-changed them a bit
in our particular article.

M.L. WESELY: The variability of wind speeds, especially the peak gusts,
inside canopies might not always "scale” well with u, or u,C s alone. Some
dependence on atmospheric stability or depth of mixed layer ?in unstable con-
ditions) seems possible. Might diffusion, impaction, and interception of
particles to individual leaves be considerably enhanced in such conditions?

W.S. LEWELLEN, A.K. VARMA and Y.P. SHENG: True, the turbulence level within
the canopy should not be expected to scale with u, whenever u, is appreciably
less than the characteristic convective velocity w., just as the horizontal
velocity fluctuatieons in the constant flux layer above the canopy do not scale
with u, under the same conditions. As a result of my discussion with you at
the conference we have attempted to include this effect on page 4 in the present
version of the paper. This significantly increases the model's expected value
of deposition for 0.5 um size particles under afternoon conditionms.
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